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Abstract

Many modeling tasks in stochastic systems and networks lead to discrete stochastic
processes. In lucky cases, the stochastic process is a Markov chain, for which well
elaborated mathematical machinery is available. Occasionally, however, one may en-
counter more complex situations when the Markov property does not hold. This is
the case, for example, when the system exhibits long-range dependencies. Another
example is when the system depends on some random initial condition, which gives
rise to different behavior, such as different transition probabilities, yielding a mixture
of Markov chains, rather than a single one. Yet another situation is when the current
state of the system may be correlated with its future evolution, it does not exclusively
depend only on the past. In these and other non-Markovian instances significantly
fewer general methods are available to serve the analysis. We present an approach
to (partially) overcome this difficulty. Specifically, we consider the approximation of
general discrete stochastic processes by Markov chains. We prove that this approach
allows the application of many pieces of Markov chain based analysis methods and
algorithms to the more general case, thus usefully extending the application domain of
a number of well-known methods and algorithms.
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1 Introduction

Analysis of stochastic systems is often based on models that apply the mathematical tech-
nique of Markov chains (or Markov processes when continuous time is considered). Once we
are able to set up a Markovian model, we can investigate both the stationary and transient
behavior of the system, using well established methods. A classic example is the rich analysis
of loss networks in telecommunications, see Kelly (1991).
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In some cases, however, a Markov model cannot adequately capture the behavior of the
system. There are several possible reasons for this. Below we list a few examples, typically
resulting in non-Markovian behavior:

• The system may exhibit long-range dependencies. This is the case, for example, with
self-similar traffic patterns that are often observed in a number of important networks,
including the Internet, the World Wide Web, and various local area networks, such as
Ethernet.

• The system may depend on some random initial condition, which gives rise to different
behavior, such as different transition probabilities, yielding a mixture of Markov chains,
rather than a single one. Generally, such a mixture gives rise to a process that is not
a Markov chain. For such mixtures see interesting results in Faragó (2021).

• Yet another situation is when the current state of the system may depend on its future
evolution, not determined solely by the past, not even in a probabilistic sense. For
example, we may randomly select a trajectory from a set of possible trajectories, in a
way that violates the Markov property.

In this paper, which is an updated version of the technical report Faragó (2020), we
describe an approach that can help the analysis of non-Markovian models, and brings back
the possibility to apply results that are routinely used for Markov chains.

2 General Setting: Discrete Stochastic Processes

Let us consider stochastic processes with discrete time and finite state space, without as-
suming that they are Markov chains. For brevity, we call such a process a discrete stochastic
process. We use the following notations:

• A discrete stochastic process: X = (Xt, t = 0, 1, 2, . . .). Observe that we start counting
the time from t = 0. Accordingly, X0 is called the initial state of the process.

• The state space of the process is assumed finite, and is denoted by S. Each Xt takes its
values in S. The finiteness assumption can be relaxed, we just adopt it here to avoid
complications that would only obscure the main message.

• The probability distribution of Xt is denoted by πt, which is identified with a vector
in [0, 1]|S|. (In matrix expressions it will be regarded a row vector.) We call these
distributions the one-dimensional distributions of the process.

• We define the first-order transition probability matrix (or, simply, transition probability
matrix) of X at time t by

Pt = [pt(a, b)]a,b∈S = [Pr(Xt+1 = b |Xt = a)]a,b∈S. (1)
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Note that these transition probabilities are routinely used for Markov chains, but
such conditional probabilities can be defined for any discrete stochastic process. Ob-
serve, however, that if the process is not a Markov chain, then, generally, the value of
Pr(Xt+1 = b |Xt = a) is not independent of previous history, i.e., it may hold that

Pr(Xt+1 = b |Xt = a) �= Pr(Xt+1 = b |Xt = a,Xt−1 = at−1, . . . , X0 = a0) (2)

which we refer to as history dependence.

• If Pt is independent of t, then we call the process first-order homogeneous. In this case
all Pt matrices can be replaced by the single matrix

P = [p(a, b)]a,b∈S = [Pr(Xt+1 = b |Xt = a)]a,b∈S.

Observe that if Pt is independent of t, it does not mean that t cannot occur in the
expression, as it already occurs in Xt+1 and Xt. It only means that the probabilities
cannot directly depend on t.

Note that first-order homogeneity generally does not imply the Markov property, so
history dependence may still occur, i.e., we may still have (2). It is also worth mention-
ing that if the process is obtained from a stationary process, discarding the negative
time instants, then it will be first-order homogeneous.

3 Markov projection of Discrete Stochastic Process

Now we introduce a useful concept, calledMarkov projection. Informally, it is a Markov chain
that preserves some basic properties of the general discrete stochastic process, but it is not
identical with it, as the latter is possibly not a Markov chain. In a sense, this concept projects
the discrete stochastic process to the family of Markov chains, thereby approximating the
original process with a Markov chain. As we are going to see, the approximating Markov
chain (the Markov projection) is uniquely determined. The formal definition is presented
below.

Definition 1 (Markov projection) Let X = (Xt, t = 0, 1, 2, . . .) be a discrete stochastic
process. The Markov projection of X is defined as a Markov chain X̃ = (X̃t, t = 0, 1, 2, . . .)
that is generated as follows:

• Set X̃0 = X0, i.e., X̃ starts from the same initial state as X.

• Having obtained X̃0, . . . , X̃t, the value of X̃t+1 is drawn by making an independent
random transition from the value of X̃t, according to the transition probabilities in Pt,
defined in (1).

We are also going to use the terminology that X is the parent process of X̃. It is clear
from the definition that X̃ is indeed a Markov chain, since it is generated such that whenever
we are in a given state a at time t, we move into a state b with probability pt(a, b) and this
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random choice is made, by definition, independently of the previous history. (Note that even
if the original process exhibits history dependence, pt(a, b) is used as a constant probability
for any given t, a, b.) Consequently, for every a, b ∈ S and for every t

Pr(X̃t+1 = b | X̃t = a) = pt(a, b) =

Pr(X̃t+1 = b | X̃t = a, X̃t−1 = at−1, . . . , X̃0 = a0).

Thus, X̃ has the same first-order transition probabilities as the parent process X, namely,
pt(a, b). (On the other hand, generally this does not extend to higher order probability
distributions if the parent process is not a Markov chain.) Furthermore, it is well known
from the theory of Markov chains that the initial distribution and the (first-order) transition
probabilities determine the chain uniquely, so there is no ambiguity when we talk about the
Markov projection of a discrete stochastic process.

4 The Fundamental Property of the Markov projection

Let us now look at a key property of the Markov projection. It can be stated such that the
one-dimensional distributions of the Markov projection and the parent process are the same.
Thus, in this sense, the Markov projection indeed provides a Markov chain approximation
of the original discrete stochastic process. Let us introduce a definition:

Definition 2 (First order equivalence) Let

X = (Xt, t = 0, 1, 2, . . .) and X̃ = (X̃t, t = 0, 1, 2, . . .)

be two discrete stochastic processes, with first order distributions πt, π̃t, t = 0, 1, 2, . . ., re-
spectively. We say that X and X̃ are first order equivalent, if πt = π̃t holds for every
t = 0, 1, 2, . . ..

Theorem 1 (Fundamental Property of Markov projection) Every discrete stochastic
process is first order equivalent with its Markov projection.

Proof. We need to show that π̃t = πt holds for every t. Assume there is an integer τ with
π̃τ �= πτ and choose τ such that it is the smallest such integer. Since π̃0 = π0 by definition
(see definition 1), we have τ ≥ 1. Let us express πτ (b) for an arbitrary b ∈ S. We can write,
using the law of total probability:

Pr(Xτ = b) =
∑
a∈S

Pr(Xτ = b |Xτ−1 = a) Pr(Xτ−1 = a).

With our notation this is
πτ (b) =

∑
a∈S

pτ−1(a, b)πτ−1(a)

which in vector form gives
πτ = πτ−1Pτ−1.
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By the choice of τ we have π̃τ−1 = πτ−1, yielding

πτ = π̃τ−1Pτ−1. (3)

On the other hand, as the first-order transition probabilities of X and X̃ are equal by the
defining construction, we obtain that in the Markov chain X̃

π̃τ = π̃τ−1Pτ−1. (4)

holds. Comparing (3) and (4) results in π̃τ = πτ , contradicting to the definition of τ. Thus,
π̃t = πt must hold for every t.

♠

5 Consequences of the Fundamental Property

5.1 Trajectory Summation Formula

An important consequence of Theorem 1 is that some basic formulas that are routinely used
for Markov chains, in fact remain valid for arbitrary discrete stochastic processes.

Corollary 1 For every discrete stochastic process

πt = π0

t−1∏
i=0

Pi (5)

holds. Furthermore, the probability Pr(Xt = a) can be expressed as

Pr(Xt = a) =
∑

a0,...,at−1

Pr(X0 = a0)p0(a0, a1) · . . . · pt−1(at−1, a) (6)

where the summation is taken over all trajectories a0, a1, . . . , at−1, a. Moreover, if the process
is first-order homogeneous (but still not necessarily Markov), then the above formulas simplify
to

πt = π0P
t (7)

and
Pr(Xt = a) =

∑
a0,...,at−1

Pr(X0 = a0)p(a0, a1) · . . . · p(at−1, a).

Proof. For the Markov projection of X the relationship π̃t = π̃0
∏t−1

i=0 Pi holds, being a
Markov chain. By theorem 1 we have π̃t = πt, implying (5). If we write down the details
of the matrix product in (5), we get precisely (6). If X is first-order homogeneous, then
P0 = P1 = . . . = Pt holds, too, yielding the second pair of formulas. ♠

Note that if X is a Markov chain (possibly not time-homogeneous), then the probability
that we reach at via a given trajectory a0, a1, . . . , at is precisely the product

Pr(X0 = a0)p0(a0, a1) · . . . · pt−1(at−1, at) (8)
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due to the Markov property. Since reaching at via different trajectories are exclusive events
and they represent all possibilities, therefore, summing up for all such possible products
naturally gives the formula

Pr(Xt = a) =
∑

a0,...,at−1

Pr(X0 = a0)p0(a0, a1) · . . . · pt−1(at−1, a) (9)

for Markov chains. On the other hand, if X is not a Markov chain, then the probability
of traversing a given trajectory a0, . . . , at may not be equal to (8) because of the effect of
history dependence. Nevertheless, the trajectory summation formula (9) still remains valid,
even though the individual summands may not be equal to the individual probabilities of
the corresponding trajectories.

The key message of Corollary 1 can be summarized as follows:

Pseudo-Markovian behavior of discrete stochastic processes: The one-dimensional
distributions in a discrete stochastic process can be expressed by the transition probability
matrices in the same way as in a Markov chain (see equations (5) and (7)). This holds even
if the process does not satisfy the Markov property.

5.2 Stationary Distribution and Ergodicity

Via the Markov projection, we can directly carry over a number of fundamental concepts
and results from Markov chain theory to a more general setting.

Definition 3 Let X = (Xt, t = 0, 1, 2, . . .) be a discrete stochastic process with state space
S. Assume that X is first-order homogeneous (but possibly not Markov) and let its first-order
transition probability matrix be P . Then we can introduce the following concepts, in analogy
with Markov chains:

• A probability distribution π on S is called a stationary distribution of X if π = πP
holds.

• A process is called ergodic if it has a stationary distribution π, and the one-dimensional
distribution πt satisfies limt→∞ πt = π.

• The process is called irreducible if there exists a positive integer k with P k > 0, that
is, every entry of the matrix P k is positive.

• The process is called aperiodic if for every a ∈ S

gcd{m : p(m)(a, a) > 0} = 1

holds, where the p(m)(., .) are the entries of Pm, and gcd means greatest common divi-
sor.

The concepts of Definition 3 are routinely used for Markov chains, but they do not
actually require the Markov property, so they can be extended to arbitrary first-order ho-
mogeneous discrete stochastic processes.
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Now we can analyze how the fundamental features of these concepts carry over from
Markov chains to arbitrary first-order homogeneous discrete stochastic processes.

Theorem 2 Let X = (Xt, t = 0, 1, 2, . . .) be a first-order homogeneous discrete stochastic
process. Assume that X is irreducible and aperiodic (but possibly not Markov). Then the
following hold:

• The process is ergodic, i.e., it has a unique stationary distribution π, and limt→∞ πt = π
holds.

• Let X̃ denote the Markov projection of X. Then X̃ also has a unique stationary
distribution π̃. Moreover, π̃ = π, and the Markov projection is an ergodic Markov
chain.

• The rate of convergence to stationary in X is the same as in the Markov projection X̃.
In particular, πt − π = π̃t − π̃ holds for every t.

Proof. By the definition of the Markov projection X̃ (see definition 1), the (first-order)
transition probability matrix is the same for X and X̃. Then by fundamental property of
the Markov projection (Theorem 1), we have π̃t = πt for every t. The rest follows directly from
the well known fundamental results of Markov chain theory on the stationary distribution
and ergodicity, see, e.g., Aldous and Fill (2014), Kemeny (1960), Kijima (1997), Norris
(1997).

♠

6 Examples

6.1 A Non-Markovian Process

Let X = (Xt, t = 0, 1, 2, . . .) be discrete stochastic process, in which the transition proba-
bility matrix satisfies

Pr(Xt+1 = b |Xt = a) = f(a, b,Xt−1)

for t ≥ 1, where f : S3 �→ [0, 1] is a fixed function. In other words, the probability of moving
from a to b at time t depends not only on where the process was at time t, but also where
it was at time t− 1.

This process is generally not Markov on the state space S, as we may have

Pr(Xt+1 = b |Xt = a) �= Pr(Xt+1 = b |Xt = a,Xt−1 = c),

for some a, b, c ∈ S, that is, the Markov property may not hold.

Assume further that the process satisfies the following connectivity property: from every
state a ∈ S any state b ∈ S can be reached with positive probability.

Now we ask the question:
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If πt denotes the probability distribution of Xt, then can we conclude from the
available information that πt converges to a unique limit distribution (even if the
process is not Markov)? Further, if such convergence is present, then what is the
rate of convergence?

The answer can be obtained from our results. We can argue the following way:

• The expression for Pr(Xt+1 = b |Xt = a) is the same for every t ≥ 1 (does not directly
depend on t), so the process is first-order homogeneous. (To handle t = 0, we can
artificially introduce some value for X−1, this has no asymptotic significance.)

• The condition that from every state a ∈ S any state b ∈ S can be reached with positive
probability implies that the process is irreducible and aperiodic even if the process is
not Markov (see Definition 3).

• Then from Theorem 2 we can conclude that the process is ergodic, i.e., it has a unique
stationary distribution π, and limt→∞ πt = π holds. Note that all these were defined
without the Markov property, see Definition 3.

• Again from Theorem 2, we can conclude that the rate of convergence to the station-
ary distribution is the same as in a Markov chain with transition probability matrix
[Pr(Xt+1 = b |Xt = a)]a,b∈S. In our example this amounts to the matrix

[E(f(a, b,Xt−1))]a,b∈S.

Once this matrix is numerically known, we can apply the standard methods of Markov
chain analysis.

The above example shows that our general framework can be used to derive useful con-
clusion, which may be much harder to prove directly from the specific features of the process.

6.2 Trajectory Correlations

Let X = (Xt, t = 0, 1, 2, . . .) be a first order homogeneous discrete stochastic process, with
transition probabilities p(a, b) = Pr(Xt+1 = b | Xt = a). As discussed in Section 2, such
transition probabilities can be defined for every process, but they do not have to satisfy the
Markov property, i.e., it is possible that

Pr(Xt+1 = b |Xt = a) �= Pr(Xt+1 = b |Xt = a,Xt−1 = at−1, . . . , X0 = a0)

holds for some a, b, at−1, . . . , a0 ∈ S.

Consider now a trajectory a0, a1, . . . , at, which is any sequence of states, such that one
can move from each one to the next with positive probability. Let Pr(a0, a1, . . . , at) denote
the probability that the system traverses this trajectory when moving from state a0 to state
at. We call such a trajectory positively correlated, if

Pr(a0, a1, . . . , at) >
t−1∏
i=0

p(ai, ai+1)
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holds. It means, that the probability of traversing the trajectory is larger than what we would
get by making individual transitions independently by the same state transition probabilities,
but ignoring history dependence.

Similarly, we call a trajectory negatively correlated, if

Pr(a0, a1, . . . , at) <
t−1∏
i=0

p(ai, ai+1).

Finally, let us call a trajectory balanced, if

Pr(a0, a1, . . . , at) =
t−1∏
i=0

p(ai, ai+1).

Now, the next result directly follows from the trajectory summation formula (see Sec-
tion 5.1):

Theorem 3 Let X = (Xt, t = 0, 1, 2, . . .) be a first order homogeneous discrete stochastic
process. Then precisely one of the following holds:

• The process has both positively and negatively correlated trajectories; or

• Every trajectory is balanced, in which case the process is a Markov chain.

7 Open Problems

Finally, below we outline some open problems that can serve as interesting research subjects.

7.1 First Order Equivalence at Random Times

We know from Theorem 1 that the original process X and its Markov projection X̃ are first
order equivalent. By definition, this means that for every t the distributions of Xt and of
X̃t agree. For short notation, let us denote distribution of any random variable η by D(η).
Then we can formulate the first order equivalence of X and X̃ as

∀t ∈ {0, 1, 2, . . .} : D(Xt) = D(X̃t).

Now we can ask the question: if τ is a random time, does D(Xτ ) = D(X̃τ ) still remain valid
if X̃ is the Markov projection of X? After all, if the relationship D(Xt) = D(X̃t) holds for
every time, how could it fail at a random time?

Interestingly, however, without any restriction on τ , the relationship D(Xτ ) = D(X̃τ )
generally does not remain true. This shows that in the probability context we have to be
careful with the qualifier “every.” It really means “every fixed,” which may not extend to a
random value. To illustrate it, consider the following example.
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Fix an a ∈ S and let τ be the first time when Xτ = a and X̃τ �= a. Since X and X̃ are
generally different, such an a and τ must exist at least for some processes. But then D(Xτ )
is concentrated on the singleton {a}, while D(X̃τ ) is concentrated within the set S − {a},
so we obtain that D(Xτ ) �= D(X̃τ ) must hold, even though D(Xt) = D(X̃t) is true for every
(fixed) t.

The above considerations lead to the question: at which random times τ can we still
guarantee that D(Xτ ) = D(X̃τ )?

7.2 Higher Order Equivalences

The original process X and its Markov projection X̃ are first order equivalent, meaning that
their respective first order distributions are equal at every fixed time t. Under what condi-
tions can this be extended to a higher order equivalence? For example, considering second
order, under what conditions can we claim that the 2-dimensional distributions also agree?
This would mean that for any t1, t2, the distribution of (Xt1 , Xt2) is the same as the distri-
bution of (X̃t1 , X̃t2). Such a higher order equivalence would mean a closer approximation of
the original process by a Markov chain.

8 Conclusion

The presented results provide a simple but useful method to handle non-Markovian models.
If we are able to deduce or measure the first-order transition probabilities of the system,
then the stationary distribution and also the speed of convergence to stationary (transient
analysis) can be obtained from the analysis of the Markov projection, utilizing the fact that
its 1-dimensional distributions coincide with that of the original process. In other words,
we can reduce the analysis of a non-Markovian system to a Markov chain, carrying over a
number of non-trivial results from Markov chain theory.

Acknowledgment: The author would like to thank to Alexandru Hlibiciuc for insightful discus-

sions.
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